C++ SDK#
UStore C++ SDK#
Most of UStore is implemented in C++, but the C++ implementation is isolated from the C++ interface. That is the “Hour-Glass” pattern. C layer provides stability and the top C++ layer brings back the syntactic sugar we all love.
Zero Cost#
The core idea of C++ is - don’t pay for what you don’t use. It is both a blessing and a limitation.
db.main[42] = 'Purpose of Life'.encode()
If you are writing something like this in Python, you don’t care about performance much.
You don’t care that 42
will be heap allocated, same way as the value your are assigning to that key.
If it fails, an exception will be raised and the stack will be unwound.
database_t db;
status_t status = db.open();
blobs_collection_t main = db.main();
main[42] = "purpose of life"; // This raises, `.assign()` doesn't
In C++ none of that is happening. Zero copies and no exceptions, unless you want them.
Primary Conventions#
Almost all functions return ::status_t
or an ::expected_gt
monoid.
All of them are marked noexcept
.
Dereferencing the expected_gt<wanted_t>
gives you the wanted_t
.
Self-explanatory, I guess.
Assuming _
substitutes for some randomly named auto
, following code is valid:
database_t db;
_ = db.open();
// Single-element access
blobs_collection_t main = db.main();
main[42] = "purpose of life";
main.at(42) = "purpose of life";
*main[42].value() == "purpose of life";
_ = main[42].clear();
// Broadcasting same value to multiple keys
main[{43, 44}] = "same value";
// Operations on smart-references
_ = main[{43, 44}].clear();
_ = main[{43, 44}].erase();
_ = main[{43, 44}].present();
_ = main[{43, 44}].length();
_ = main[{43, 44}].value();
_ = main[std::array<ustore_key_t, 3> {65, 66, 67}];
_ = main[std::vector<ustore_key_t> {65, 66, 67, 68}];
for (value_view_t value : *main[{100, 101}].value())
(void)value;
Operator calls, that need to
return
something else, will raise an exception and are explicitly markednoexcept(false)
.
Memory Management#
Every Collection and Transaction Handle internally reuses an arena_t
.
Spawning too many of those isn’t good, but they aren’t consuming any resources until the first use.
To be more explicit about where the values are exported, use the .on(arena)
variants.
arena_t arena(db);
_ = main[{43, 44}].on(arena).clear();
_ = main[{43, 44}].on(arena).erase();
_ = main[{43, 44}].on(arena).present();
_ = main[{43, 44}].on(arena).length();
_ = main[{43, 44}].on(arena).value();
Smart References, Pointers and Iterators#
The most commonly used “smart” abstractions are:
::strided_iterator_gt
,::strided_range_gt
::indexed_range_gt
::range_gt
::bits_span_t
::strided_matrix_gt
Arrays of variable-length are packed into tapes. Those can be accessed and viewed in multiple ways:
::consecutive_chunks_iterator_gt
: with a base pointer and an array ofN
lengths.::joined_chunks_iterator_gt
: with a base pointer and an arrayN+1
offsets.::embedded_chunks_iterator_gt
: with a base pointer and arrays ofN
lengths and offsets.
Documents#
By default, collections store BLOB values. For document collections, would use a similar, but different syntax.
docs_collection_t collection = db.main<docs_collection_t>();
collection[1] = R"( { "person": "Alice", "age": 27, "height": 1 } )";
collection[2] = R"( { "person": "Bob", "age": "27", "weight": 2 } )";
In addition to basic BLOB operations you also get those:
collection[1].patch(...)
: for JSON-Patchescollection[1].merge(...)
: for JSON-MergePatchescollection[1].gist()
: to retrieve present fieldscollection[ckf(1, "person")]
: to lookup a specific fieldcollection[ckf(1, "/person/)]
: to lookup via a JSON-Pointer
Tables#
Just like in Python, we allow exporting document collections into a tabular form.
Those are all based on the ustore_docs_gather()
standard function.
The C++ abstractions come in two flavors:
Compile-time:
::table_header_gt<...>
.Dynamic:
::table_header_gt<std::monostate>
.
This is how one may use the compile time variant:
auto header = table_header() //
.with<std::int32_t>("age")
.with<std::string_view>("age")
.with<std::string_view>("person");
auto maybe_table = collection[{1, 2, 3, 123456, 654321}].gather(header);
auto table = *maybe_table;
auto col0 = table.column<0>();
auto col1 = table.column<1>();
auto col2 = table.column<2>();
The dynamic analog would be:
table_header_t header {{
field_type_t {"age", ustore_doc_field_i32_k},
field_type_t {"age", ustore_doc_field_str_k},
field_type_t {"person", ustore_doc_field_str_k},
}};
auto maybe_table = collection[{1, 2, 3, 123456, 654321}].gather(header);
auto table = *maybe_table;
auto col0 = table.column(0).as<std::int32_t>();
auto col1 = table.column(1).as<std::sting_view>();
auto col2 = table.column(2).as<std::sting_view>();
Graphs#
Just like other interfaces, supports batch operations and can be called from inside a transaction.
Refer to ::graph_collection_t
for detailed documentation.